november 29, 2023

Androbit techmagazin

Az Androbit tényeken alapuló híreivel, exkluzív videofelvételeivel, fotóival és frissített térképeivel maradjon naprakész Magyarország legfrissebb fejleményein.

Kozmológiai rejtvény a standard kozmológiai modellben

Kozmológiai rejtvény a standard kozmológiai modellben

Egy nemzetközi asztrofizikusokból és kozmológusokból álló csoport öt dokumentumot nyújtott be, amelyek szerint az univerzum sötét anyagának „összetapadása” (S8-értéke) 0,76, ez a szám összhangban van más gravitációs lencsékkel végzett felmérésekkel, de nem a kozmikus mikrohullámú háttérből származó 0,83-as értékkel. .

Egy nemzetközi tudóscsoport az Advanced Technologies és a Hyper Suprime-Cam segítségével tanulmányozta a sötét anyag „csomóit”, és 0,76-os S8-értéket talált, ami ellentétben áll a kozmikus mikrohullámú háttér 0,83-as értékével. Ez az eltérés mérési hibákra vagy hiányos standard kozmológiai modellre utalhat.

Asztrofizikusokból és kozmológusokból álló nemzetközi csapat különböző intézetekben, köztük a Kavli Univerzum Fizikai és Matematikai Intézetében (Kavli IPMU) öt kutatási dokumentumot mutatott be, amelyek az univerzumban lévő sötét anyag „csomóinak” értékét mérik. kozmológusoknak, mint például S.8, 0,76, ami igazodik a viszonylag fiatal univerzumot vizsgáló más gravitációs lencsés felmérések által talált értékekhez – de nem igazodik a kozmikus mikrohullámú háttérből származó 0,83-as értékhez, amely az univerzum eredetére vezethető vissza, amikor a Az univerzum körülbelül 380 000 éves volt. Eredményeiket előre nyomtatott lapokként töltötték fel a címre arXiv.

A két érték közötti különbség kicsi, de mivel egyre több tanulmány igazolja mindkét értéket, ez nem tűnik véletlennek. Valószínű, hogy e két mérés valamelyikében eddig ismeretlen hiba vagy hiba van, vagy hogy a standard kozmológiai modell érdekes módon hiányos.

A sötét energia és a sötét anyag a ma látható világegyetem 95%-át teszi ki, de nagyon keveset tudunk arról, hogy mik is valójában, és hogyan fejlődtek az univerzum története során. A sötét anyag csomói torzítják a távoli galaxisok fényét a gyenge gravitációs lencsék révén, ezt a jelenséget Einstein általános relativitáselmélete jósolta meg.

HSC SSP példakép

1. ábra: Példa a HSC-SSP-vel kapott képre. Köszönet: HSC-SSP és NAOJ Project

„Ez a torzítás nagyon kicsi hatás. Egyetlen galaxis alakja észrevehetetlen mértékben torzul” – mondta Kavli, Masahiro Takada, az IPMU professzora, de több millió galaxis mérésének kombinálása lehetővé teszi a torzítás nagy pontosságú mérését.

A standard modellt csak néhány szám határozza meg: az univerzum tágulási sebessége, amely a sötét anyag sűrűségének mértéke (S8), az univerzum alkotóelemeinek (anyag, sötét anyag és sötét energia) relatív hozzájárulása, az univerzum teljes sűrűsége, valamint egy technikai mennyiség, amely leírja, hogy az univerzum nagy léptékű agglomerációja hogyan viszonyul a kis léptékű világegyetem agglomerációjához.

A kozmológusok szívesen tesztelik ezt a modellt azáltal, hogy ezeket a számokat különféle módokon korlátozzák, például megfigyelik a kozmikus mikrohullámú háttér ingadozásait, modellezik az univerzum tágulási történetét, vagy mérik az univerzum csoportosulását a viszonylag közelmúltban.

A Tokiói Egyetem Kavli IPMU csillagászai által vezetett csapat[{” attribute=””>Nagoya University, Princeton University, and astronomical communities of Japan and Taiwan, have spent the past year teasing out the secrets of this most elusive material, dark matter, using sophisticated computer simulations and data from the first three years of the Hyper Suprime-Cam survey. The observations from this survey used one of the most powerful astronomical cameras in the world, the Hyper Suprime-Cam (HSC) mounted on the Subaru Telescope on the summit of Maunakea in Hawaii.

Subaru HSC Year 3 Results

Figure 2: The measurement results of S8 parameter from HSC-SSP Year 3 data. The chart shows the results from four different methods, which used different parts of the HSC-SSP Year 3 data or combined the HSC-SSP Year 3 data with other data. For comparison, “Planck CMB” shows the measurement result for S8 from the cosmic microwave background data from the Planck satellite. “Other weak lensing results” shows the results from similar weak lensing measurements based on the Dark Energy Survey (DES) and Kilo-Degree Survey (KiDS) data. Credit: Kavli IPMU

Hiding and uncovering the data

The team performed a “blinded analysis.”

“Scientists are human beings, and they do have preferences. Some would love to really find something fundamentally new, while others might feel comfortable if they find results that look consistent with foreseen results. Scientists have become self-aware enough to know that they will bias themselves, no matter how careful they are, unless they carry out their analysis without allowing themselves to know the results until the end,” said Nagoya University Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI) Associate Professor Hironao Miyatake.

To protect the results from such biases, the HSC team hid their results from themselves and their colleagues for months. The team even added an extra obfuscating layer: they ran their analyses on three different galactic catalogs, one real and two fake with numerical values offset by random values. The analysis team didn’t know which of them was real, so even if someone did accidentally see the values, the team wouldn’t know if the results were based on the real catalog or not.

The team spent a year on the blind analysis. On December 3 2022, the team gathered together on Zoom – one Saturday morning in Japan, Friday evening in Princeton – for the “unblinding.” The team unveiled the data, and ran their plots, immediately they saw it was great according to Takada. “Blinded analysis means you cannot take a peak at the results while running the analysis, which was extremely stressful, but as soon I saw the final result, all of that anxiety flew out of the window,” said Kavli IPMU graduate student Sunao Sugiyama.

3D Distribution of Dark Matter Derived From HSC-SSP

Figure 3: An example of a 3D distribution of dark matter derived from HSC-SSP. This map is obtained by using the first year’s data, but the present study examined an area on the sky about three times larger than that. Credit: University of Tokyo/NAOJ

A huge survey with the world’s largest telescope camera

HSC is the largest camera on a telescope of its size in the world. The survey that the research team used covers about 420 square degrees of the sky, about the equivalent of 2000 full moons. It is not a single contiguous chunk of sky, but split among six different pieces, each about the size of a person’s outstretched fist. The 25 million galaxies the researchers surveyed are so distant that instead of seeing these galaxies as they are today, the HSC recorded how they were billions of years ago.

Each of these galaxies glows with the fires of tens of billions of suns, but because they are so far away, they are extremely faint, as much as 25 million times fainter than the faintest stars we can see with the naked eye.

For more on this research, see Measuring Dark Matter With Hyper Suprime-Cam Reveals Discrepancy.

References:

“Hyper Suprime-Cam Year 3 Results: Cosmology from Galaxy Clustering and Weak Lensing with HSC and SDSS using the Emulator Based Halo Model” by Hironao Miyatake, Sunao Sugiyama, Masahiro Takada, Takahiro Nishimichi, Xiangchong Li, Masato Shirasaki, Surhud More, Yosuke Kobayashi, Atsushi J. Nishizawa, Markus M. Rau, Tianqing Zhang, Ryuichi Takahashi, Roohi Dalal, Rachel Mandelbaum, Michael A. Strauss, Takashi Hamana, Masamune Oguri, Ken Osato, Wentao Luo, Arun Kannawadi, Bau-Ching Hsieh, Robert Armstrong, Yutaka Komiyama, Robert H. Lupton, Nate B. Lust, Lauren A. MacArthur, Satoshi Miyazaki, Hitoshi Murayama, Yuki Okura, Paul A. Price, Tomomi Sunayama, Philip J. Tait, Masayuki Tanaka and Shiang-Yu Wang, 3 April 2023, Astrophysics > Cosmology and Nongalactic Astrophysics.
arXiv:2304.00704

“Hyper Suprime-Cam Year 3 Results: Measurements of Clustering of SDSS-BOSS Galaxies, Galaxy-Galaxy Lensing and Cosmic Shear” by Surhud More, Sunao Sugiyama, Hironao Miyatake, Markus Michael Rau, Masato Shirasaki, Xiangchong Li, Atsushi J. Nishizawa, Ken Osato, Tianqing Zhang, Masahiro Takada, Takashi Hamana, Ryuichi Takahashi, Roohi Dalal, Rachel Mandelbaum, Michael A. Strauss, Yosuke Kobayashi, Takahiro Nishimichi, Masamune Oguri, Arun Kannawadi, Robert Armstrong, Yutaka Komiyama, Robert H. Lupton, Nate B. Lust, Satoshi Miyazaki, Hitoshi Murayama, Yuki Okura, Paul A. Price, Philip J. Tait, Masayuki Tanaka and Shiang-Yu Wang, 3 April 2023, Astrophysics > Cosmology and Nongalactic Astrophysics.
arXiv:2304.00703

“Hyper Suprime-Cam Year 3 Results: Cosmology from Galaxy Clustering and Weak Lensing with HSC and SDSS using the Minimal Bias Model” by Sunao Sugiyama, Hironao Miyatake, Surhud More, Xiangchong Li, Masato Shirasaki, Masahiro Takada, Yosuke Kobayashi, Ryuichi Takahashi, Takahiro Nishimichi, Atsushi J. Nishizawa, Markus M. Rau, Tianqing Zhang, Roohi Dalal, Rachel Mandelbaum, Michael A. Strauss, Takashi Hamana, Masamune Oguri, Ken Osato, Arun Kannawadi, Robert Armstrong, Yutaka Komiyama, Robert H. Lupton, Nate B. Lust, Satoshi Miyazaki, Hitoshi Murayama, Yuki Okura, Paul A. Price, Philip J. Tait, Masayuki Tanaka and Shiang-Yu Wang, 3 April 2023, Astrophysics > Cosmology and Nongalactic Astrophysics.
arXiv:2304.00705

“Hyper Suprime-Cam Year 3 Results: Cosmology from Cosmic Shear Power Spectra” by Roohi Dalal, Xiangchong Li, Andrina Nicola, Joe Zuntz, Michael A. Strauss, Sunao Sugiyama, Tianqing Zhang, Markus M. Rau, Rachel Mandelbaum, Masahiro Takada, Surhud More, Hironao Miyatake, Arun Kannawadi, Masato Shirasaki, Takanori Taniguchi, Ryuichi Takahashi, Ken Osato, Takashi Hamana, Masamune Oguri, Atsushi J. Nishizawa, Andrés A. Plazas Malagón, Tomomi Sunayama, David Alonso, Anže Slosar, Robert Armstrong, James Bosch, Yutaka Komiyama, Robert H. Lupton, Nate B. Lust, Lauren A. MacArthur, Satoshi Miyazaki, Hitoshi Murayama, Takahiro Nishimichi, Yuki Okura, Paul A. Price, Philip J. Tait, Masayuki Tanaka and Shiang-Yu Wang, 3 April 2023, Astrophysics > Cosmology and Nongalactic Astrophysics.
arXiv:2304.00701

“Hyper Suprime-Cam Year 3 Results: Cosmology from Cosmic Shear Two-point Correlation Functions” by Xiangchong Li, Tianqing Zhang, Sunao Sugiyama, Roohi Dalal, Markus M. Rau, Rachel Mandelbaum, Masahiro Takada, Surhud More, Michael A. Strauss, Hironao Miyatake, Masato Shirasaki, Takashi Hamana, Masamune Oguri, Wentao Luo, Atsushi J. Nishizawa, Ryuichi Takahashi, Andrina Nicola, Ken Osato, Arun Kannawadi, Tomomi Sunayama, Robert Armstrong, Yutaka Komiyama, Robert H. Lupton, Nate B. Lust, Satoshi Miyazaki, Hitoshi Murayama, Takahiro Nishimichi, Yuki Okura, Paul A. Price, Philip J. Tait, Masayuki Tanaka, Shiang-Yu Wang, 3 April 2023, Astrophysics > Cosmology and Nongalactic Astrophysics.
arXiv:2304.00702

READ  Ez az alkalmazás összehasonlítja a Hubble és a Webb képeket – a különbségek csillagászatiak