július 27, 2024

Androbit techmagazin

Az Androbit tényeken alapuló híreivel, exkluzív videofelvételeivel, fotóival és frissített térképeivel maradjon naprakész Magyarország legfrissebb fejleményein.

„A dolomit probléma” – A tudósok egy 200 éves geológiai rejtélyt oldanak meg

„A dolomit probléma” – A tudósok egy 200 éves geológiai rejtélyt oldanak meg

Wenhao Sun professzor dolomitot mutat be személyes sziklagyűjteményéből. A Sun anyagtudományi szempontból vizsgálja a fémek kristálynövekedését. Azáltal, hogy megértjük, hogy az atomok hogyan jönnek létre természetes ásványokká, úgy véli, feltárhatjuk a kristálynövekedés alapvető mechanizmusait, amelyek segítségével gyorsabban és hatékonyabban lehet funkcionális anyagokat előállítani. Köszönetnyilvánítás: Marcin Szczybanski, Senior Multimedia Storyteller, Michigan Engineering.

Ahhoz, hogy dolomit-hegyeket hozzon létre, amely egy gyakori ásvány, rendszeresen meg kell olvasztani. Ez a látszólag ellentmondásos koncepció segíthet abban, hogy az új termékek hibátlanok legyenek Félvezetők És több.

A tudósoknak két évszázadon át nem sikerült laboratóriumi körülmények között előállítaniuk egy közös ásványt olyan körülmények között, amelyekről úgy gondolják, hogy természetes módon keletkeztek. Most a Michigani Egyetem kutatócsoportja és Hokkaido Egyetem Sapporóban Japán végre elérte ezt, köszönhetően az atomszimulációkkal kidolgozott új elméletnek.

Sikerük megoldja a „Dolomit-problémának” nevezett, régóta fennálló geológiai rejtélyt. A dolomit – az olaszországi Dolomit-hegységben, a Niagara-vízesésben és a utahi Hoodoo-ban található fő ásvány – bővelkedik kőzetekben. 100 millió évnél régebbiA fiatal formációkban azonban szinte hiányzik.

Wenhao Sun és Junsu Kim

Wenhao Sun, a Dow anyagtudományi és mérnöki adjunktusa a Michigani Egyetemen, valamint Junsu Kim, a Sun professzor kutatócsoportjának anyagtudományi és mérnöki doktorandusza dolomit kőzeteket mutat be laboratóriumuk gyűjteményéből. A két tudós olyan elméletet dolgozott ki, amely végre megmagyarázhat egy két évszázados rejtélyt a Földön található dolomitbőségről. Köszönetnyilvánítás: Marcin Szczybanski, Senior Multimedia Storyteller, Michigan Engineering.

A dolomit növekedésének megértésének fontossága

„Ha megértjük, hogyan növekszik a dolomit a természetben, új stratégiákat tanulhatunk meg a modern technológiai anyagok kristálynövekedésének fokozására” – mondta nemrég Wenhao Sun, a Dow Egyetem anyagtudományi és mérnöki professzora, a tanulmány megfelelő szerzője. Kiadva Tudományok.

A dolomit laboratóriumi termesztésének titka az volt, hogy a növekedés során az ásványi szerkezet hibáit eltávolították. Amikor ásványi anyagok képződnek a vízben, az atomok általában szépen lerakódnak a növekvő kristályos felület szélén. A dolomit növekedési széle azonban kalcium és magnézium váltakozó soraiból áll. A vízben a kalcium és a magnézium véletlenszerűen tapad a növekvő dolomitkristályhoz, gyakran rossz helyen telepednek meg, és olyan hibákat hoznak létre, amelyek megakadályozzák további dolomitrétegek kialakulását. Ez a zavar lelassítja a dolomit növekedését csúszássá, ami azt jelenti, hogy 10 millió évbe telne egyetlen réteg rendezett dolomit elkészítése.

A dolomit atomszerkezetének diagramja

Dolomit kristály élszerkezet. A magnézium sorai (narancssárga golyók) váltakoznak a kalcium soraival (kék golyók), karbonátokkal (fekete struktúrák) tarkítva. A rózsaszín nyilak mutatják a kristálynövekedés irányát. A kalcium és a magnézium gyakran helytelenül kötődik a növekedési szélhez, leállítva a dolomit növekedését. A kép forrása: Junsu Kim, anyagtudományi és mérnöki doktorandusz, Michigan Egyetem.

Szerencsére ezeket a hibákat nem javítják a helyükön. Mivel a rendezetlen atomok kevésbé stabilak, mint a megfelelő helyzetben lévő atomok, ezek oldódnak fel először, amikor a fémet vízzel mossák. Ha ezeket a hibákat ismételten elmossuk – például esővel vagy árapály-ciklusokkal –, a dolomitréteg néhány év alatt kialakulhat. A geológiai idő múlásával dolomit hegyek halmozódhatnak fel.

READ  Ausztráliában mélyen fekvő óriási szerkezet lehet a valaha feljegyzett legnagyobb aszteroida becsapódás: ScienceAlert

Fejlett szimulációs technikák

A dolomit növekedésének pontos szimulálásához a kutatóknak ki kellett számítaniuk, hogy az atomok milyen erősen vagy gyengén kapcsolódnak a meglévő dolomit felületéhez. A pontosabb szimulációk megkövetelik az egyes elektronok és atomok közötti kölcsönhatások energiáját a növekvő kristályban. Az ilyen kimerítő számítások általában hatalmas számítási teljesítményt igényelnek, de a Marylandi Egyetem Prediktív Szerkezeti Anyagtudományi Központjában (PRISMS) kifejlesztett szoftver parancsikont kínál.

„Szoftverünk kiszámítja egyes atomi elrendezések energiáját, majd extrapolálja azokat, hogy megjósolja más elrendezések energiáit a kristályszerkezet szimmetriája alapján” – mondta Brian Buchala, a program egyik vezető fejlesztője és az egyetem kutatótársa. Maryland megye. Anyagtudomány és mérnöki tudomány.

Ez a parancsikon lehetővé tette a dolomit növekedésének szimulálását geológiai időskálán keresztül.

Dolomit Olaszország

A dolomit az ősi kőzetekben annyira elterjedt ásvány, hogy hegyeket képez, például az azonos nevű hegyláncot Észak-Olaszországban. A dolomit azonban ritka a fiatalabb kőzetekben, és nem készíthető laboratóriumban olyan körülmények között, amelyek között természetes módon keletkezett. Egy új elmélet először segített a tudósoknak az ásványt laboratóriumban, normál hőmérsékleten és nyomáson termeszteni, és segíthet megmagyarázni a dolomit hiányát a fiatalabb kőzetekben. A kép forrása: Francesca.z73 a Wikimedia Commons segítségével.

„Minden egyes atomlépés általában több mint 5000 CPU-órát vesz igénybe egy szuperszámítógépen. Most már 2 ezredmásodperc alatt elvégezhetjük ugyanezt a számítást egy asztali számítógépen” – mondta Junsu Kim, anyagtudományi és mérnöki doktorandusz, a tanulmány első szerzője.

Gyakorlati alkalmazás és elméleti tesztelés

Az a néhány terület, ahol manapság dolomit képződik, időszakosan elönti a víz, majd később kiszárad, ami jól egyezik Sun és Kim elméletével. De ezek a bizonyítékok önmagukban nem voltak elégségesek ahhoz, hogy teljesen meggyőzőek legyenek. Lépjen be Yuki Kimura, a Hokkaido Egyetem anyagtudományi professzora és Tomoya Yamazaki, Kimura laboratóriumának posztdoktori kutatója. Transzmissziós elektronmikroszkópokkal tesztelték az új elméletet.

READ  Dan Levitt "What Gotten Into You" az atomok hosszú útját követi nyomon az ősrobbanástól az emberi testig

„Az elektronmikroszkópok általában csak elektronsugarat használnak a minták leképezésére” – mondta Kimura. „A sugár azonban a vizet is megoszthatja, így… savanyú Ami a kristályok feloldódását okozhatja. Ez általában rossz dolog a fotózásnál, de ebben az esetben a dekompozíció pontosan az, amit szerettünk volna.

Miután egy kis dolomitkristályt kalcium-magnézium-oldatba helyeztek, Kimura és Yamazaki két óra alatt 4000-szer gyengéden pulzálta az elektronsugarat, eltávolítva a hibákat. Az impulzusok után a dolomit körülbelül 100 nanométerrel nőtt, ami körülbelül 250 000-szer kisebb, mint egy hüvelyk. Bár ez csak 300 réteg dolomit volt, korábban soha nem termesztettek laboratóriumban öt réteg dolomitnál többet.

A dolomitprobléma tanulságai segíthetik a mérnököket abban, hogy jobb minőségű anyagokat állítsanak elő félvezetők, napelemek, akkumulátorok és egyéb technológiák számára.

„Régebben a kristálytermesztők, akik hibátlan anyagokat akartak készíteni, nagyon lassan próbálták termeszteni” – mondta Sun. „Elméletünk azt mutatja, hogy gyorsan lehet hibátlan anyagokat növeszteni, ha a hibákat a növekedés során időszakonként feloldja.”

Hivatkozás: Junsu Kim, Yuki Kimura, Brian Buchala, Tomoya Yamazaki, Udo Becker és Wenhao Sun „Melting Enables Growth of Dolomite Crystals at Near Ambient Conditions”, 2023. november 23. Tudományok.
doi: 10.1126/science.adi3690

A kutatást az American Chemical Society PRF, az Egyesült Államok Energiaügyi Minisztériuma és a Japan Society for the Promotion of Science finanszírozta az új doktori kutatói ösztöndíj.